First, the design of the rotor has been optimized for various applications.
The lobe shape appeared to work very well and provides a high efficiency.
However, there is always room for improvement. We thereby took up a challenge to run a series of optimization simulations in order to really understand the operation of this turbine. However, the rotor shape is extremely challenging to simulate. The calculation grid in particular is a challenge as two rotating parts rotate through each other’s space. To solve this problem, we collaborated with CFX Berlin. They have developed a tool TwinMesh and with the aid of this tool calculation grids for such complicated inter-penetrating shapes could be easily generated. Therefore, making it possible to run a series of optimization simulations and make the design better.
In order to find the best operating point, the efficiency, torque and power have been calculated for many rpms.


With the support of our final report, the Shell Gamechanger program was convinced and Shell made a budget available to test the entire design for feasibility. This feasibility study was carried out by DNV-GL and was not only a check of the performance of the turbine, but included much more aspects such as the manufacturability, robustness and cost price. The analysis of DNV-GL did not reveal any major flaws or other unforeseen problems. They recommended to go to the testing phase. Unfortunately, this is costly and no investor has yet been found.
More questions about this project or a startup in which we might play a role?